
Efficient Maze-Running and Line-Search Algorithms
for VLSI Layout

Si-Qing Zheng, Joon Shik Lim, and S. Sitharamnu Iyengar

Department of Computer Science
Louisiana State University

Baton Rouge, LA 70803-4020

ABSTRACT

In this paper, a new construct called connection graph, Gc, is
proposed. An efficient geometric algorithm for constructing Gc is
given. We present a framework for designing a class of time and
space efficient maze-running and line-search rectilinear shortest path
and rectilinear minimum spanning tree algorithms based on Gc. We
give several example maze-running and line-search algorithms based
on Gc to demonstrate the power of Gc in designing good sequential
VLSI routing algorithms.

Keywords: VLSI routing, maze-running algorithm, line-search
algorithm, rectilinear shortest path and rectilinear minimum spanning
tree.

1. Introduction

Most existing VLSI computer-aided design systems are based
on the uniform grid model. With the grid model, wires connecting
signal nets are considered as subgraphs of the grid. The major
constraints, such as the minimum wire width and the minimum
separation between wires, imposed by the current VLSI technologies
are ensured by an automatic process once the abstract layout is
generated. The objectives of the VLSI layout problems include
finding a circuit layout such that the total area used is small and the
wires interconnecting signal nets are short.

One of the most classic, but still up-to-date, method for VLSI
routing is called sequential routing. In this method, a Steiner tree is
constructed for each net in a sequential order. Once a Steiner tree
connecting a net is constructed, the routing space is updated so that
the constrains for routing subsequent nets can be enforced. The
sequential routing method has received the most attention in practice.
It is widely used for global routing and detailed routing, as well as
printed circuit board (PCB) design. There are two basic classes of
sequential routing algorithms: maze-running algorithms and line-
search algorithms. Most of these algorithms are aimed at finding an
obstacle-avoiding path, preferably a shortest one, on the grid between
two given grid points. Generalizations of these algorithms to the
problem of finding a spanning or Stein tree connecting multiple grid
points are usually straightforward. In this paper, we first consider the

problem of finding rectilinear obstacle-avoiding shortest paths. Then
we generalize our results to the minimum rectilinear obstacle-
avoiding spanning tree problem.

Let R be an n x n grid that consists of a set of grid nodes (

(x , y) I x , y arc integers such that 1 I x , y 5 n), and grid edges that
connects grid nodes that are unit distance apart. A horizontal
(vertical) grid line segment is a path consists of horizontal (vertical)
grid edges. Let B = [B,, . . . , B",) be a set of mutually disjoint
rectilinear polygonal obstacles whose boundaries lie on the grid lines
of R. Each B, is represented by a set of grid line segments whose
endpoints are the corners of B,. Let R-B denote the partial grid of R
(i.e. subgraph of R) that consists of grid nodes that are not contained
in the interior of any B,, and grid edges that are not incident to any
grid nodes contained in the intcrior of any B,. In the context of VLSI
design, grid R reprcsents a rectangular area for the circuit layout.
Circuit components and previously laid out wires are characterized
by rectilinear polygons B, with boundaries lie on the grid lines. The
grid nodes and edges covered by the interior of these polygons are
considered not available for subsequent routing steps. Thus, what
available for completing the routing is a partial grid of R, and the
portion of the grid that are not usable are treated as obstacles. Given
a soiirce node s and a turget node t in R - B, R - B is the entire
search space for all possible obstacle-avoiding paths from s to t. It is
sometimes convcnicnt to use another planar graph derived from grid
R - B to represent the layout space. Let H be an (n + 1) x (n + 1) grid
consists of grid node set [(x , y) I x = i - 0.5, y = j - 0.5, i and j are
integers such that 1 5 i, j 5 n + 1) and grid edgcs connecting two
grid nodes that are unit apart. Each face formed by four grid nodes
of H is called a cell. We define the offset reprvsentution of R - B as
the the portion of grid H with all cells in the interior of portions
corresponding B,'s removed. Then, a path from a source node s to a
target node t in R - B corresponds to a sequence of cells in the offset
representation of R - B, each contains a grid node of R - B on the
path from s to t . In figure 1, we show an instance of R - B, and in
figure 2 we give the offset representation of R - B of figure 1.

The maze-running algorithms can be characterized as target
directed grid expansion. The first such algorithm is Lee's algorithm
[8], which is an application of the breadth-first shortest path search
algorithm by Dijkstra [191 to the grid routing graph. In the worst

0-7803-12574/93~3.00 0 1993 IEEE-

1 . I

case, Lee's algorithm takes O(n2) time. Several improved maze-
running algorithms have been proposed [3, 4, 7, 8, 10-13, 15, 161.
Hadlock [4] applied the idea of using lower bound on distance to the
target to direct the search proposed in [6] to the maze-running
method. He gave a f/Jini/llllf?Z detour algorithm [4]. He used a new
labeling measure, called detour number, for each node. Let M (s , 1)

denote the Manhattan distance (i.e. the distance in Ll metric)
between s and t . For a path P connecting s and t , the detour number
d (P) is the total number of units on P direct away from t. Then, the
length of P is M (s , t) + 2 c / (P) . The minimum detour algorithm
searches paths in the increasing order of detour numbers. It
guarantees to find the shortest path using time between O(n) and
O(n2) for an n x n grid R. Soukup [161 proposed a fast algorithm
that combines the depth-first-search with the breadth-first-search.
This algorithm guarantees to find a path if it exists, but not
necessarily an optimal path. Soukup's algorithm executes a depth-
first-search from the source node toward the target node using "don't
change direction" heuristic until an obstacle is hit or a target node is
found. If an obstacle is hit, then a breadth-first-search is used for
searching around the obstacle until a node directs to the target node is
reached. Then, depth-first-search is continued. In figures 3, 4, and 5,
we show the expanded nodes generated by Lee's algorithm,
Hadlock's algorithm and Soukup's algorithm, respectively, using the
offset grid representations. In these figures little circles and solid
dots are the expanded nodcs, and the dots represent a path from s to

achieve better expected performance by restricting the search on a
graph that is much smaller than the given grid. For example, the line-
search algorithm given in [18] is as follows. First, a special grid
graph. called ~ J W C ~ graph GT, is constructed from R and B . Then, a
path from s to t on GT is constructed by applying Dijkstra's
algorithm. Since GT is usually much smaller than the original grid,
and GT can be constructed efficiently, the time and space
performances better than that of maze-running algorithms can be
expected. However, the path found using GT may not be the shortest
one.

The major contributions of this paper are as follows:

(1) We introduce a new construct called connection graph, Gc,
to reduce the size of search space.

(2) We show that there always exists a simplest minimum
spanning tree connecting a set S of nodes in Gc with total
edge length equal to the length of a minimum spanning tree
of S in R - B.

(3) We give an efficient geometric algorithm for constructing
the Connection graph Gc.

(4) We present a frmcwork for designing a class of time and
space efficient maze-running and line-search shortest path
and minimum spanning tree algorithms based on Gc.

(5) We give several example maze-running and line-search
algorithms based on Gc to demonstrate the power of Gc in

1.
designing good sequential VLTI routing algorithms.

Since the search space of all previous maze-running algorithms
are represented as dense grid graphs, they are inherently inefficient in
both time and space. The line-search algorithms have been proposed
to achieve better performance. These algorithms use powerful
computational geometry techniques to represent the search space by
a set of line segments rather than unit grid edges. Consequently, they

(6) Since the connection graph Gc is much sparser than grid
R - B in practice, and updating Gc after the wires
connecting a net are introduced can bc efficiently done by
locally modifying Gc, our approach provide a powerful
and versatile tool for designing cfficicnt sequential VLSI
routing algorithms.

save space and quickly find a simple-shaped paths. The major
drawback of the line-search algorithms is that they usually do not

2. Connection Graph

guarantee finding a shortest path. Early line-search algorithms are
reported in [5] and [9]. The basic operations of algorithm by Mikami
and Tabuchi [9] are as follows. First, straight lines are emanated
from node s and node I in all possible directions. These search lines
arc called level-0 trial lines and stored in a temporary storage. Then,
the path search is conductcd by a iterating process. At the ith
iteration, the following operations are preformed: pick u p level-i trial
lines one by one from the temporary storage. Along each such trial
line, trace all grid nodes, and emanate new lines perpendicular to the
trial line from these nodes. These newly generated line segments,
which end either at the boundary of an obstacle B, or the boundary of
the grid R, arc identified as level+ + 1) trial lines. This process
continues until a trial line from s mects a trial line from t . This
algorithm finds a path from s to t if there exists one, but the path is
not generated to be the shortest one. Figure 6 shows a running
example of this algorithm. The line-search algorithm given in [5] is
similar to the one in [9]. Another type of line-search algorithms

In this section, we introduce the connection graph Gc for the
shortest path problcni. More general form of Gc will be discussed
later. Let HL(R, B) and VL(R, B) be the seb of horizontal and
vertical line segments of the boundaries of R and obstacles in B ,
respectively. We define a horizontal (vertical) line segment 1 = (U , v)
in R - B as a rnaxinial horizontal (vertical) line segment of G - B if
1 does not cross any B , in B, and U and v are the only two points on 1

that are also on the boundaries of R or obstacles in B. Let
HL(R - B) = { 1 I I = (u , v) is a maximal horizontal line segment of
R - B such that at least one of its endpoints u and v is a corner of
some B, in B } and VL(R - B) = (I I I = (U, v) is a maximal vertical
line segment of R - B such that at least one of its endpoints U and v
is a corner of some B, in B] . Let I&) (I&)) be the maximal
horizontal (vertical) line segment of R - B that contains s. the source
node. We similarly define two line segment and l&), which are
the maximal line segments containing t , the target. The nodes of Gc

are the intersection points of the line segments in

{ l) t (s) , lv(s) , l&), l v (f) } , and the edges of Gc are the subsegments
generated by these line intersections. The connection graph Gc for
the example of figure 1 is given in figure 7.

H L (R u B) u V L (R u B) H L (R - B)uVL(R - B)u

The main purpose of introducing connection graphs is to reduce
the search space in which a shortest path can be found. This should
lead to shortest path algorithms that require less storage and time
resources. The following thcoreni shows that the problem of finding
a shortest path in R - B can be reduced to the problem of finding a
shortest path in Gc.

Theorem 1: If there exists a path from s to t in R - B, then the
length of shortest path from s to t in Gc is equal to the length of the
shortest path from s to t in R - B.

In the context of VLSI layout, i n addition to minimizing the
length of the path connecting two nodes, it is desirable to minimize
the number of turning points on the path. We say that a shortest path
P between s and t is a simplest shortest path if P contains minimum
number of turning points among all shortest paths between s and t .

Theorem 2: If there exists a path from s to t in R - B , then a
simplest shortest path in R - B can be found in Gc.

We observe the following additional properties of Gc: (i) For
practical VLSI layout problems, Gc is much sparser than R - B. (U)
In the context of VLSI layout, a path P between s and t in Gc
corresponding to a wire connecting a net of two terminals, s and t ,

and once this wire is included into the routing solution, it will be
considered as a obstacle for subsequent routing steps. Then, updating
Gc to include P as an obstacle can be efficiently done by locally
changing the structure Gc. Based on theorem I , theorem 2 and these
two properties, a class of rectilinear shortest path algorithms for
VLSI routing can be designed using the connection graph Gc,
instead of R - B.

3. Construction of Connection Graphs

We show how to efficiently construct the connection graph Gc.
from given rectangular boundary R and a set B of mutually disjoint
rectilinear polygonal obstacles in R. The construction of Gc uses the
/dane-sweep techniciue from computational geometry [22] . Gc can be
constructed by first construct HL(R , B) u H L (R - B) and
VL(R, B) u V L (R - B). Then, all intersection points of line segments
in HL(R, B) u H L (R - B) and VL(R, B)uVL(R - B) are generated.
Finally, line segments l / , (s) , l v (s) , / , , (t) and l , (t) and their
intersections with the segments in HL(R, B) u H L (R - B) U

V L (R , B) u V L (R - B) are generated. We assume that Gc is
represented by the adjacency lists. Since the methods for
constructing HL(R, B) u H L (R - E) and VL(R, B) u V L (R - B) are

similar, we only describe the procedure for constructing
HV(R, B)uHV(R - B).

The set H V (R , B) is given as part of input. We only need to
generate H V (R - B) to complete the construction of
VL(R, B)uVL(R - B). To facilitate our discussions, we introduce a
couple of new notions. We call a vertical boundary line segment 1 of
an obstacle B, a left (right) srgnient of B, if the interior of B, is to the
right (left) of 1. We call a corner point w formed by two orthogonal
boundary segment 1 , = (t i , w) and l2 = (w , v) of B, a convex comer if
there exists a line segment 1’ = (a, b) such that a is on l I and b is on
/ 2 , a # w, b # w, and all point on /‘except a and b arc in the interior
of B,. If such a line segment docs not exist, w is called a concave
coiner of B,. The lollowing procedure generates all segments in
VL(R - B). In this proccclurc, we use s(/) to denote the x-coordinate
of vertical segment 1. We use /ow(/) and high(/) to represent the
lower and upper endpoints of I , respectively, and use x(u) and y(rr) to
represent the x- and y-coordinates of point t i , respectively.

procedure VERTICA L-SGMT
Sort all vertical boundary segmcnts of obstacles in B in

lexicographical order by their lower endpoints into a queue Q ;
x’ := x (/) , where / is the first segment i n Q;
while Q is not empty do

I := cfequeue(Q);
i f x’ # x(1) then x’ := x (/) ;
case

: I is a left boundary segment and /ow(/) is a convex comer:
find the largest element y’ i n T that is smaller than
V (/ O W (/))

let ti = (x , y‘) and v = (x, y(low(1));

T := T U (y (/ o w (/))] ;
VL(R - B) := VL(R - B) U ((U , v)] ;

: I is a left boundary segment and low(1) is a concave
corner:

T := T - (y (/ o w (/)) } ;

:I is a right boundary scgmcnt and /ow(l) is a convex
corner:

find the Iaugcst element y’ in T that is smaller than

let t i = (x. y’) and v = (x , y(/ow(/)) ;
y(low(1))

VL(R - B) := VL(R - B) U ((U, v) } ;
T := T - (y(low(1)));

: E is a right boundary segment and low(/) is a concave
corner:

T := T U (y(/ow(/))) ;
endcase
case

: E is a left boundary segment and high(/) is a convex
corner:

find the smallest element y’ in T that is larger than
y(high(l))

let II = (x , y’) and v = (x , y(high(/));

T := T - (y (h i g b (l))] ;
VL(R - B) := VL(R - B) U ((1 1 , v)] ;

: I is a left boundary segment and high([) is a concave
corner:

: I is a right boundary segment and high(l) is a convex
corner:

find the smallest element y‘ in T that is larger than
y(high(l))
let II = (x, y’) and v = (x , y(high(l));

T := T - (y (h igh (l)) } ;

T := T U { y(high(l))) ;

V L (R - B) := VL(R - B) U { (U , v)] ;

:I is a right boundary segment and high(1) is a concave
corner:

T := T U (y (h igh (l)) } ;
endcase

endwhile
end VERTICAL-SGMT

Theorem 3: Connection graph Gc can be constructed in
O(n, log n, + e) time, where n, is the total number of corner points of
B and e is the total number of edges in Gc.

4. Maze-Running and Line-Search Algorithms Based on
Connection Graphs

Using the connection graph Gc, we can obtain a class of
efficient modified shortest path algorithms. These algorithms may use
maze-running techniques, or line-search techniques, or the
combination of these techniques. We discuss a few possibilities.

Let (R - B) n Gc denote the partial uniform grid defined on
Gc. Clearly, (R - B) n Gc can be constructed from Gc by breaking
each edge of Gc into grid edges of unit length. The time required for
this construction is O(I,) and the space for (R - B) n Gc is O(1,),
where 1, is the total edge length of Gc. In figure 8 we show (R - B)
n Gc for the example of figure 1 by marking its cells with x’s .
Then, all existing maze-running algorithms can be applied to the
partial grid (R - B) n Gc. Since (R - B) n Gc is always consists of
less cells (in the offset grid representation) than G - B , these
modified maze-running algorithms are more time and space efficient
than their original ones. In figures 9, 10 and 11, we show the
improved performance of modified Lee’s algorithm, Hadlock’s
algorithm and Soukup’s algorithm. The meaning of little circles and
solid dots is the same as in figures 3, 4 and 5. Compared with figure
3, 4 and 5, the number of expanded nodes by each of these modified
algorithms is much smaller than that of the original algorithm.
Similar improvements can be observed in the modified versions of
other existing maze-running algorithms. It should be mentioned that
all previously introduced coding methods for reducing the storage
requirement are valid on the grid graph (R - B) n Gc.

Theorem 4: An obstacle-avoiding shortest path from s to 1 can be
computed by modified maze-running algorithms in no more than
O(1,) time and space from the connection graph Gc, where 1, is the
total edge length of Gc.

Modified maze-running algorithms may still require excessive
storage and time in the worst case. The connection graph Gc can be
considered as a “supergrid”, which consists of much less number of
grid nodes and edges than R - B (Note: in any grid graph the number
of nodes and the number of edges are about the same since the
degree of each node is no more than 4.) Based on Gc, we can obtain
a set of modified line-search algorithms from the existing ones. We
give two examples. By applying the line-search algorithm of
Mikami and Tabuchi to the connection graph Gc, we obtain a
modified line-search algorithm which only generate trial lines that
are in Gc. Since Gc is much sparser than G - B , finding a path from
s to f in Gc requires much less time and space. Note that the original
algorithm in [9] cannot be directly applied to the problem instances
in which the obstacles are not defined on a uniform grid. Using the
connection graph Gc, this restriction is removed. As the original
algorithm by Mikami and Tabuchi, this modified algorithm does not
guarantee a shortest path. The performance of this modified
algorithm for the example of figure 6 is shown in figure 12.

Using the connection graph Gc. most of existing maze-running
algorithm can be transformed into line-search algorithms. The
performance of the line-search versions of Lee’s algorithm,
Hadlock’s algorithm and Soukup’s algorithm for the example of
figure 1 are shown in figures 13, 14 and 15, respectively. In these
figures, little circles and solid dots are the expanded nodes, and the
dots represent a path from s to f . In these line-search algorithms,
edges of Gc. each of them may consist of many unit grid edges of
G - B, are consider one at a time. Since the number of edges (and
nodes) is much smaller than the number of grid edges of G - B, these
line-search algorithms are much more time and space efficient than
their maze-running versions on (G-B)nGc. Note that the line-
search version of Lee’s algorithm here is exactly Dijkstra’s shortest
path algorithm applied to Gc. Although in general the size of the
track graph GT introduced in [18] is smaller than the connection Gc,
applying the the Dijkstra’s or Hadlock’s algorithm to GT does not
always guarantee a shortest path. In contrast, by theorem 1, using
Dijkstra’s algorithm and Hadlock’s algorithm on Gc a shortest path
is always guaranteed. This leads to the following claim.

Theorem 5: An obstacle-avoiding shortest path from s to r can be
computed from Gc in no more than O(e + m log m) time and O(e)
space, where e is the total number of edges (and nodes) in the
connection graph Gc, and m is the total number of nodes of Gc
expanded when a shortest path is found.

It is important to note that the line-search versions of Lee’s
algorithm, Hadlock’s algorithm and Soukup’s algorithm can be

applied to problem instances in which the boundaries of obstacles in
B are not defined on a uniform grid.

5. Generalizations

A direct generalization of the shortest path algorithms presented
in this paper is the design of efficient maze-running algorithms and
line-search algorithms for constructing obstacle-avoiding minimum
length rectilinear Steiner trees and spanning trees. The Steiner tree
problem corresponds to the problem of introducing wires to connect
a multi-terminal net on a VLSI chip or a printed-circuit board. The
minimum rectilinear Steiner tree problem is NP-complete [20]. It is
known that the ratio between a the length of a rectilinear minimum
spanning tree (M S T) and the length of a rectilinear minimum Steiner
tree is no more than 3/2 [21]. In practice, a rectilinear minimum
spanning tree is first constructed, and then modified to obtain a
Stciner tree. Given a rectangle boundary R, a set B of mutually
disjoint rectilinear polygonal obstacles in R and a set S = (t , , . . . , t p]
of points in R - B, the objective of the MST problem is to construct a
rectilinear MST T of minimum total length that connects all points in
S, and any line segments in T does not cross any boundary segment
of R and B. The Connection graph Cc for this problem is defined as
follows. For each tl E S construct two line segments, horizontal
segment l a (t l) and vcrtical segment l,,(r,), passing through t, such that
their two endpoints are the only points on them that are the boundary
points of R and/or obstacles in B. Then, the intersection points of

1, 2, p) are the nodes of Gc and the line segments with endpoints
from these intersection points are the edges of Gc. If we treat each t ,
E S as a corner point, we can obtain an efficient algorithm for
constructing Gc wing the plane-sweep technique.

HL(R, B) U VL(R, B) U HL(R - B) uVL(R - B) U [l/,(t,), l&,) I i =

Theorem 6: Given R, B and S, the connection graph Gc can be
constructed in O((n, + s) log& + s) + e) time, where n, is the total
number of corner points of B, s is the number of points in S and e is
the total number of edges in Gc.

The following properties of generalized Gc are important for
designing efficient maze-running and line-search algorithms for
constructing obstacle-avoiding MST's.

Theorem 7: If there spanning tree S in R - B, then the length of the
MST of S in Gc is equal to the length of the MST of S in R - B.

In a spanning tree T i n the grid graph, we call a node with
degree greater than 3 ajcmction. In the context of VLSI layout, it is
desirable to minimize the the number of junctions and the number of
turning points in a spanning trce. We say that an MST T of S is a
simplest MST if the sum of the number of junctions and the number
of turning points is the minimum among all MST's of S.

Theorem 8: If there exists a spanning tree of S in R - B, then a

simplest minimum spanning tree of S in R - B can be found in Gc.

By these three theorems, a class of maze-running and line-
search algorithms for the rcclilinear MST problem can be designed
using the Connection graph Gc, instead of R - B. The performance
improvements in these MST algorithms should be similar to the
shortest path algorithms we demonstrated in the previous section. As
a special example, based on the techniques proposed in [18], we have
the following claim:

Theorem 9: A minimum spanning tree of S in R - B can be found in
Gc in no more than O(e log e) lime, where e is the number of edges
in Gc.

The connection graph Gc can be quite dense. One opun
problem is to identify and characterize a graph whose size is much
smaller than Gc. yet good enough to guarantee the existence of
shortest paths and minimum spanning trees. If such a connection
graph can be constructed from R and B elficicntly, more effective
maze-running and line-search algorithms are possible.

6. References

[l] S.B. Akers, "A Modification of Lee's Path Connection
Algorithm ," IEEE Transactions on Electronic Conipnters,

[2] K.L. Clarkson, S. Kapoor, and P.M. Vaidya, "Rectilinear
Shortest Paths through Polygonal Obstacles in O(n(1og 1112)
Time," In Proceedings of the Third Annirul Conference on
Coinpirtational Geornetry, pp. 251-257, ACM, 1987.

[3] J.M. Geyer, "Connection Routing Algorithms for Printed Circuit
Boards,'' IEEE Transactions on Circuit Theory, CT-18(1). pp.

[4] EO. Hadlock, "A Shortest Path Algorithm for Grid Graphs,"
Networks, 7, pp. 323-334, 1977.

[SI D.W. Hightower, "A Solution to Line Routing Problems on the
Continuous Plane," In Proceedings of the Sixth Design
Automation Wiukshop, pp. 1-24, IEEE, 1969.

[6] P. Hart, N. Nilsson and B.Raphael, "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths," IEEE
Transactions on Systems, Science and Cybernetics, SCC-4(2),

[71 J.H. Hod, "Some Variation of Lee's Algorithm," IEEE
Tvansactions on Cornprrters, C-25(1), pp. 19-24, 1976.

[8] C. Y. Lee, "An Algorithm for Path Connections and Its
Applications," IRE Transactions on Electronic Computers,

191 K. Mikami, K. Tabuchi, "A Computer Program for Optimal
Routing of Printed Circuit Connectors," IFIPS Proceedings,

[IO] E. E Moore, "The Shortest Path Through a Maze." Annals ofrhe

Harvard Coinpiitation Laboratory, Vol. 30, Pt. 11, pp. 285-292,

EC-16(2), pp. 97-98, 1967.

95-100, 1971.

pp. 100-107, 1968.

EC-10(3), pp. 346-365, 1961.

H-47, pp. 1475-1478, 1968.

1959.
[1 I] T. Ohtsuki, "niaLc-running and Linc-search Algorithms," In T.

Ohtsuki, editor, Advances in CAD for VLSI, Volume 4: Layout
Design and Verification, pp.99-13 1, North-Holland, New York,
1986.

[I21 I. Pohl, "Heuristic Search viewcd as path finding in a Graph,''

[131 I. Pohl. "Bi-Direclional Search," Machine Intclligence, Volume

[141 P.J. Rezend, D.T. Lee, and Y.-E Wu, "Rectilinear Shortest Paths
with Rectangular Barriers," In Pi~ceedings of rhe Second
Annual Conference on Coinp~itational Geometry, pp. 204-213,
ACM, 1985.

[15] E Rubin, "The Lee Path Conncction Algorithm," IEEE

1161 J. Soukup, "Fast Maze Router," Proceedings 15th Design

Arrijicial l n te l l igmcr , Vol. 1, pp. 193-204, 1970.

6, pp. 127-140, 1971.

Transuctiuns on Cotripritei.s, C-23(9), pp. 907-9 14, 1974.

Arrtomation Coriftxnce, pp.100- 102, 1978.

7. Figures

Figure I: Grid represenlation of R - B .

[17] P. Widmayer, "Network Design Issues in VLSI," Manuscript,
Department of Computer Science, University of Freiburg,
Freiburg, West Germany, 1989.

[18] Y.-E Wu, P. Widmayer, M.D.F. Schlag, C.K. Wong, "Rectilinear
Shortest Paths and Minimum Spanning Trees in the Presence of
Rectilinear Obstacles," IEEE Transactions on Computers,

[19] E.W. Dijkstra, "A Note on Two Problems in Connexion with
Graphs", Nuineriscke Mathematik, Vol. 1, pp, 269-271, 1959.

[20] M.R. Carey and D.S. Johnson, "The Rectilinear Steiner Tree
Problem is NP-Complete", SIAM J. Cornput., Vol. 15, pp.

[21] EK. Hwang, "On Steiner Minimal Trees with Rectilinear
Distance", SIAM J. Appl. Math., Vol. 30, pp. 104-114, 1976.

[22] F. P. Preparata and M.I. Shanios, Conipritational Geometry,
Springer-Verlag, 1985.

C-36(3), pp.321-331, 1987.

317-340, 1986.

I: Soum Node. I: Target Nodc. 0: Extended Nodes

Figure 3: Expanded Nodes by Lee Algorithm
%: Source Node. I: Target Node, 0: Extended Nodes

Figure 4: Expanded Nodes by Hadlock Algorithm

--T--.-

I: Swrce Node. t: Tugcr Nodc. 0: Extended Nodes

Figure 5: Expanded Nodes by Souhp Algorithm Figure 6 Line Search Algorithm of
Mikami and Tabuchi

Figure 7: The connection graph G,

Figure 9 Expaudcd Nodcr by the modsied Lce AgoriUlm Figure 10 Expanded Noda by lhc modifled Hadlock AgoriUun

figure 1 1: Expanded Nodes by the modlficd Scukup Agonthm

Agun 13: The Performance of Ihe Line-Search
Version of Le Algorithm

Figure IS: The Perfonnmx of the LinGSearch
Version of Saulolp Algorithm

